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2.0 INTRODUCTION TO BOOTSTRAPPING
2.1 Introduction

There are a lot ofvaluable statistical methods that are pratally
guaranteed to work well if the data are approximately normally distributed and
we are mainly concerned \Wwh linear functions ofrandom variables. As was
remarked in Chapter 1,the mean oraverage of adata set is alinear
combination ofrandom variables,and the central limit theorem says that we
can expect mans toconverge on normality agshe sample size increases.
However, ecologists ofterare forced touse small samples. Very often wewant
to consider ratios of random variables, which are definitely nonlinear
combinations, and dfficult to deal wth in any comistent manner. Many
models of importance in ecological studies contain products, ratios and
exponents, and are simply not susceptible to a standardtatistical analysis in
terms of the available theory.

A relatively new development instatistical mehtodology offers a way
out of this dilemma. The technique is calléthootstrapping”, which, according
to Efron and Tibishirani (1993) was named from tparase "to pull oneself up
by one's bootstraps”, i.e., to accomplish a physical impossiblity.Efron and
Tibishirani (1993:56) notethat the bootstrap was introduced byEfron in 1979,
making it quite arecent development in comast to many other statistical
techniques. Itwas preceded by 'gckknifing” which was originated by
Quenouille (1956) as a way to studybias in estimators, buthamed by John
Tukey (1958) due to itsall-purpose applicability, like one's handy jackknife. A
related topic is the use of the "delta method" to estimedeiances for estimates
based oncomplicated mdels. We will touch on these latter two methodkater,
but will mainly depend onbootstrapping aghe principal tool for handling
difficult problems.

One ofthe nice things about bootstrapping isthat it is simple toapply,
so long as one has access t@anputer. Detailed application requiresaccess to
a desk computer andsome knowledge of aprogramming language. However,
bootstrapping can be done in EXCEL, as used here. There are several
programming languages that can beused for bootstrapping. Most of the
examples given her were also done in EXCEL, which has arandom number
generator inthe statement RANDBETWEEN(N1,N2)where Nland N2represent
the range of the random numbers to be generated. Be suthe ANALYSIS
TOOLPAK is loaded beforaattempting the EXCEL versions ofbootstrapping. Pull
down the Tools menu and use the add-mlement tofind the Analysis Toolpak.
Details of usevary with the version, soyou may need touse the “help”
function on occasion.

2.2 The mechanics of bootstrapping

Bootstrapping iseasy to apply. The process for approximating the
standard error of amean isillustrated in Fig. 2.1. An original data set
containing nitems (here n =10) is randomly sampled with replacement B
times, wth each samplecontaining exactly n itemsp. Four of these Bsamples
are shown above the original datet in Fig. 2.1. Notehat anindividual value
from the original data set,such asl106 may appear repeatedly in abootstrap
sample. Each of the Bbootstrap samples isaveraged, asshown above the
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individual samples. This is the bootstrap_replication. We then use these B
replicate values to computethe standard error ofthe mean. The equation is

. . 2 (Xj - x)2
exactly the ame asthat for calculating a variance,namely & =01
However, Efron and Tibishirani use a different notation to disthguish
bootstrap variables fromthe original data, using x*!,x*2, ..., x*B to denote the

vectors containing the bootstrap samples of nobservations (i.e., the four sets
of bootstrap samples of 10items each shown in Fig. 2.1). Thus the first
bootstrap sample is

¥ =(203,203,106,106,106,160,106,8,301,160).
The original data is represented by the vector x XX, ... . %).

145.9 57.1 144.2 108.3 BOOTSTRAP
REPLICATIONS

203 131 61 203
203 11 203 11

106 8 131 301

106 67 8 160 BOOTSTRAP
106 106 106 67 SAMPLES
160 8 11 11

106 160 301 . 8

8 8 160 301

301 11 301 13

160 61 160 8

\ 4
1 2 3

<3,106,203,131,160,8,67,61,11,301

ORIGINAL DATA SET

MEAN 106. 1

Fig. 2.1 The bootstrapping scheme for estimatingtandard error. Aroriginal
data setcontaining nitems is randomly sampled Btimes with replacement
using samples ofkize n. Each such bootstrap sample isaveraged, and these
means are used to estimate teeandard error othe mean of the original data
set.

The quantity s(x*) denotes a statistic computed from t®rresponding

bootstrap sample. In this case s(x*1) is the average ofthe first bootstrap
sample, 145.9. Using the bootstrap notation the standard error ofthe mean
estimated by bootstrap sampling is written as:

» soot= 2[s<x*b) - SOI2 Y112

(2.1)
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where the summation runs from b = 1 to B, and sépresnts the mean of the
bootstrap sample, i.e.zx* b/B, where again the summation runs from b = 1 to B.
The important thing toremember here ishat s(x*P) represents the mean of
the bth bootstrap sample, so that s)(is the average of Bsuch averages. Note,

too, that the standard error of a set of random variables is computed H%, s/n
but here we are computing the standard deviation eftaof means and this is
the standard error of the mean (i.e., don't make rnhstake ofdividing by the
square root of B).

The first few columns of anEXCEL worksheet used tobootstrap the data
of Fig 2.1 follow. The first rowshows theassignment of a&erial number to the
original data items, while the originaflata appear in the secondw. The next
10 rows list random numbers from 1 to 10 obtained from the statement
RANDBETWEEN(1,10). The next set of numbers are random samples, with
replacement, from the original data set.

ITEM NUMBER 1 2 3
DATA 13 106 203
1 6 8 2
2 9 7 6
RANDOM 3 1 3 10
NUMBERS 4 8 9 9
5 2 2 1
6 5 6 1
7 3 8 9
8 1 2 6
9 7 2 2
10 3 2 8
1 38 61 106
BOOTSTRAP 2 11 67 8
SAMPLES 3 13 203 301
4 61 11 11
5 106 106 13
6 160 8 13
7 203 61 11
8 13 106 8
9 67 106 106
10 203 106 61
SUM 845 835 638
MEAN 84.5 83.5 63.8

These areobtained by using dtable lookup" function in EXCEL. It can be
explained by referring to the following formulas for the first column.
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ITEM NUMBER 1

DATA 13
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)

1
2
RANDOM 3
4
5 =RANDBETWEEN(1,10)
6
7
8
9
1

NUMBERS

=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)
0 =RANDBETWEEN(1,10)

=HLOOKUP(C3,$C$1:$L$2,2,FALSE)
=HLOOKUP(C4,$C$1:$L$2,2,FALSE)
=HLOOKUP(C5,$C$1:$L$2,2,FALSE)
=HLOOKUP(C6,$C$1:$L$2,2,FALSE)
=HLOOKUP(C7,$C$1:$L$2,2,FALSE)
=HLOOKUP(C8,$C$1:$L$2,2,FALSE)
=HLOOKUP(C9,$C$1:$L$2,2,FALSE)
=HLOOKUP(C10,$C$1:$L$2,2,FALSE)
=HLOOKUP(C11,$C$1:$L$2,2,FALSE)
0 =HLOOKUP(C12,$C$1:$L$2,2,FALSE)

BOOTSTRAP
SAMPLES

P OO ~NOOTA, WN P

SUM =SUM(C14:C23)
MEAN =C25/10

The statement HLOOKUP(C3,$C$1:$L$,2,FALSE) spéies a horizontal lookup
table (VLOOKUP permits avertical lookup table). The first entry isthe column
entry for the value to belooked up in the table,i.,e., C3denotes arandom
number entry, for which we need to find thecorresponding entry in the
original data row. Thelookup table isspecified by the aray, $C$1:$L$1 in
which the first row is the index value corresponding to aata entry in the
next row. The subsequent value in HLOOKUP isthe row containing the data to
be returned bythe HLOOKUPfunction, and the final entry ("FALSE") insures
that the function returns the exact value required (usfiRUE" would permit
returning the value nearest innumerical magnitude to &okup entry). As
with any of the more complex functions in EXCEL, a little practice will make
the role of the individual entries clea An important proviso wth the
HLOOKUP and VLOOKUPfunctions isthat the lookup tablemust be in thefirst
rows (or first columns for VLOOKUP) of thespreadsheet.The last entries above
give the sums and eans ofthe bootstrap samples. The neans are used in
eg(2.1) to calculate the bootstrap standard emo Readers should understand
that the example used here is mainly intended tdemonstrate the approach.
The best stimate of a standard error of @et of numbers isthat calculated by
the usual formula, i.e., from

2 (xj - X)2
S.E2 W
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Bootstrapping is used to calculate standard errors for more complex functions,
for which a direct estimate of a variance is not available from statistical
theory.

Exanpl e 2. 1. The ori gi nal dat a of Fig. 2. 1.
13, 106, 203, 131, 160, 8, 67,61, 11, 301 represent data on survival times in
days. They can be considered to come from an experinent on the effect of
some treatment on survival of experimental animals (whereupon there
should be a corresponding set of data from a control group) or the
survival tines of a set of radio-tagged wild animals. It is a snmall
sanple, but this is common, inasnmuch as there is increasing public
pressure to reduce experimental use of live animals, and collecting data
fromw ld animals is expensive and can be quite difficult. W would thus
like to extract as much information as possible fromthe data. The data
in Table 2.1 are from an EXCEL worksheet that conputes the bootstrap
standard error. It shows the first 10 columms of a total of 50, which is
likely the mninum size that should be used to denonstrate behavior of
bootstrapping. In preparing such spreadsheets, one should change the
calculation node from automatic to manual (in the TOOLS nenu, under
OPTI ONS or PREFERENCES dependi ng on the version of EXCEL) while building
the worksheet. The calculate conmand can then be used to see how the
result varies fromrun to run.

2.3 Empirical probability distributions

The probability distribution of arandom variable, X, isany complete
description ofthe probabilistic behavior of x. In coin-tossingwith a "fair"
coin, there are two possibilities, each occurring with probability 1/2. In
rolling a die, there are 6 outcomes, each having Pr{x = k} =1/6 for 1k2:3,4,5,
or 6. It is convenient todefine the sample space, Sx, as a list of possible

outcomes. Thus for dair die, Sy ={1,2,3,4,5,6} and we assign probability 1/6 to

each event inthe sample space. Considerthe bnomial distribution which
assigns a probability to each sample point in the sample space {0,1,2,3, ... , k, ...
n} but these pobabilities depend onthe parameter, p, othe distribution. The
binomial distribution is:

Probx; = K} = fic = ( )pk(1-p)n-k (2.2)

I
where C ) is evaluated as(n_lrlw , in which, for example, 5! (read as "five
factorial”) is calculated as 5x4x3x2x1 = 120.
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Table 2.1 Sample from bootstrapping the data of Fig. 2.1.

ITEM NUMBER 1 2 3 4 5 6 7 8 9 10
DATA 13 106 203 131 160 8 67 61 11 301
1 7 8 1 6 5 4 6 2 8 6
2 10 10 3 8 10 10 2 4 3 2
RANDOM 3 2 7 4 10 7 4 3 5 10 10
NUMBERS 4 4 1 4 4 5 6 8 10 3 7
5 8 6 1 6 7 8 5 3 1 4
6 9 7 9 4 4 9 1 7 6 6
7 1 5 6 9 10 3 5 3 9 7
8 1 8 3 2 10 10 10 1 1 7
9 5 2 6 6 9 10 1 10 10 6
10 2 6 3 8 7 3 2 2 2 6
1 67 61 13 8 160 131 8 106 61 8
BOOTSTRAP 2 301 301 203 61 301 301 106 131 203 106
SAMPLES 3 106 67 131 301 67 131 203 160 301 301
4 131 13 131 131 160 8 61 301 203 67
5 61 8 13 8 67 61 160 203 13 131
6 11 67 11 131 131 11 13 67 8 8
7 13 160 8 11 301 203 160 203 11 67
8 13 61 203 106 301 301 301 13 13 67
9 160 106 8 8 11 301 13 301 301 8
10 106 8 203 61 67 203 106 106 106 8
SUM 969 852 924 826 1566 1651 1131 1591 1220 771
MEAN 96.9 85.2 92.4 82.6 156.6 165.1 113.1 159.1 122 77.1

For convenience in discussing bootstrapping, we can describe a
probability distribution as F{{,fo,f3, ... ;% ... ,iN} where § is the limiting

frequency ofthe ith event. For asingle die, weinfer that fi = 1/6, and would
expect toeventually comevery close tothat value, given enough rolls of the
die. If we determine f from observations, hen itcan beconsidered to be an

empirical probability distribution. Instead ofrolling dice, we can set up a
spreadsheet using RANDBETWEEN(1,6), copy this down through, say, 1c@00s,
and tabulate the outcomes by using the histogram function in the aatdysis
menu under TOOLS. This gave the following results:

Bin Frequency  Proportion F(x)
1 181 0.1810 0.1810
2 179 0.1790 0.3600
3 162 0.1620 0.5220
4 172 0.1720 0.6940
5 152 0.1520 0.8460
6 154 0.1540 1.0000

TOTAL 1000
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The column under proportion gives the empirical frequency distribution, with
the corresponding cumulative frequency distribution being shown under
F(x).

It is necessary to note that, in mathematical statistics, F(x) represents
the cumulative probability distribution function, RXx= Pr{x <_X}.The table

above provides an example. We will use the descript’i\o{flﬁz,fg, vk oINS

for a finite number of events as a handy way to represent an empirical
probability distribution in discussing bootstrapping. The "hat",”, over a symbol
means that the quantity is an estimate of the true, but unknown, value, F. The
cumulative, F(¥) = Pr{x < X}, will mainly be used here in simulations. It is

important to remember that the sum of the frequencies im,E{ff3, ... .k ...
N} is always unity, described as PES} = 2 fx = 1, where €' means "contained
in".

2.4 Sample sizes for bootstrapping

Bootstrapping is aresampling procedure, that is, we takerepeated
samples of the originadata set, calculatevalues ofsome statistic s(x*) and use
these to infer something about the true, but unknown value of some
parameter. In the example used thus far, the statistic wasstéedard error of
the mean. How many bootstrapeplications are needed? Efron and Tibishirani
[1993: EQ.(6.9)] give a formula for examining the effect warying sample size,
but also indicate that, in their experience, B =200 is usually adequate for
estimating the standard error, while B = 50 mpyovide useful information. 1In
the problems | have dealt with thus far by usibgotstrapping, Itend touse B
= 100 for exploring data and debugging programs, and B = 1,00Q,000 for the
published result. With desktop computing so cheap, one might edls resort to
"overkill' unless the statistic being bootstrapped isvery compicated and
requires a lot of computingtime. However, this choice of B_>1,000 is also
largely driven by the fact that larger samples are needed tocompute
confidence limits by bootstrapping, aswe'll see in the next section. When
making calculations using EXCEL in some older versions one can onlyagetut
250 bootstraps in the horizontal plane, gois desirableto use VIOOKUPand set
up the table in the vertical planayhereupon it ispossible toget 2,000 or more
bootstraps for confidence limits. If more bootstraps are needed,one cancopy
off data to another sheet and recalculate, copy off those results, and
recalculate again. Large samplescan thus beobtained. However, asnoted
above, 2,000 is usually adequate for confidence Ilimits.

2.5 Percentile confidence limits

Calculating confidence limits by bootstrapping can be extremely
simple, if the percentile method issed. Followthe sameprocess demnstrated
in Fig. 2.1, generating at least 1,000 bootstraps (I tend to 2u8@0 if conputing
doesn't take too long), store the data in a file, arrange it in numerical order,
and count in aB/2 observations from both ends, where o is the chosen
"significance level". These are thepercentile confidence limits. Although
there is nothing in the underlying theory that dictates a choice,most
biologists tend to usex = 0.05, for 95% confidence limits.
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To accomplish this in EXCEL, use VLOOKUBNd put thedata in thefirst 2
columns, the same number of random numbers inthe third row asthere are
data points, and the corresponding lookup valuesin the fourth row. Calculate
the function being bootstrapped insubsequentrows. You can then order the
data and count in from both ends for confidence limits. In this case, the
function being bootstrapped issimply the mean. Confidence limits are
obtained byordering this column (use SORT in the DATA menu of EXCEL) and
counting in from the ends of theordered data. To usea = 0.05 on 1,000
bootstraps, one would count in 25 observations from each end. Inethdsnple,
the approximate 95% confidence limits were 55.4 to 169around the mean of
106.1 of the dginal data, based orl,000 bootstraps. Using aBASIC program to
do the bootstrapping isfaster and requires less effort once the programming
is done. Reslts of 2,000 bootstraps from a BASIC program (Fig. 2.2) gave
confidence limits of about 55-164.

As noted previously, EXCEL will accomodate ateast 2,000 bootstraps in
the vertical arrangement. However, if anolder (and thusslower) computer is
used, it may be best to donly 200 bootstraps at a@ime. That is, set up the
operation asshown onthe attached sheet, run 200 bootstraps, and copy the
results to a second worksheet. Dothis 5 times (or 10 if you want 2,000
bootstraps) and then order the data on the second wrksheet tolocate the
confidence limits.

Students should review normal theory confidence limits in the statistics
text of their choice at this point. Under normal theory, we would calculate a
standard error of the mean of the original data of Fig. 2.1 (mean = 106.1),

getting s = 95.33, and S.E. = 95.33/44%) = 30.14, and calculate 95% confidence
limits of + 1.96 SE. | tend to use 2 rather than 1.96 for convenience, and a little
extra margin. Using 2 S.E. gives approximate 95% limits of 46 to 166. Survival
data generally follow a highly skewed distribution, and the sample variance
tends to vary appreciably. In this case, the limits are so wide that the data don't
give us a very good notion of average survival time.

Statistics books recommend transforming skewed data in order to
approximate normality. Onethen produces norai-theory confidence limits as
above, and transforms back to the original scale. It can, however, be a
considerable chore tofind anormalizing transformation suitable for the data
at hand. Further, the small sample of Example 2.1 simply does not supply
enough information to evaluate possible transformations. It is theigssuring
that Efron and Tibishirani (1993: Chap. 13)dicate that the percentile method
automatically supplies limits that would be obtained under normal theory if we
knew the proper transformation to normalize the data.
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Fig. 2.2 Frequency plot of 2,000 bootstraps ofthe original data of Fig. 2.1,
showing mean of the original data (heavy central vertical line),and 95%
confidence limits (lighter lines to right and left) from the bootstraprcentile
method for calculating confidencelimits. These limits are at about 55 and 164
for the data shown. Note that the appearance ofthese graphs will vary
somewhat as this is a sampling procedure.

2.6 Regression models and parametric bootstrapping

Regression models provide extremely valuable tools in ecological
studies. Manyinvestigators use regressions without giving much thought to
the matter, and may thuseport some erroneous results without realizing that
this is possible. Regression models are classified aslinear and nonlinear.
Linear models aremost commonly used, with the main example being y = +
Bx, where a denotes the "intercept" and B the "slope". Ecologistsalso use
multiple regression models ith two or more x-values, e.g., y =a + B1X1 + B2X2,

and may also use multiple regression models like w =+ B1xq + Box22. These are
both linear models, being "linear in the coefficients", but a version like oy +=

B1x1 + B2x2Y is nonlinear. A frequently encountered nonlinear model is

y =aePX. This model can, however, betransformed into a linear model by
taking logarithms (usually to base e) giving ¢99= loga - Bx. The model y =a +

B1X1 + PB2x2Y is said to be intrinsically nonlinear, inasmuch as a simple
transformation will not convert it to alinear version (unless, ofcourse, we
know or assume we knowy). Dealing with intrinsically nonlinear models can
be difficult, and they are most often fitted with norinear least-squares.
Programs are available for fitting by nonlinear least-squares.

Regression models may bebootstrapped in ectly the sameway as
shown in Fig. 2.1, except that now theoriginal data will consist ofx,y pairs,
and the statistic computed from bootstrap replications consists of paired
estimates ofa and B, rather than the mean asused in the example ofFig. 2.1.
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How these sets ofpaired estimatesare treated depends onhe purpose of the
study. Oten the main interest is inestimates ofg, but we rmay also vant to set
confidence limits on an atimate of some value of x computed from the
estimates ofa andp. Texts on regression analysis are available; one of the more
widely used isthat of Draper and Smith (1998), and most basic statistics texts
give agood deal ofattention toregression models. Toset confidence limits on
some regression s&timate by bootstrapping, one simply needs tofollow the
procedure presentedabove, with the "statistic® being the estimat of interest

in the study at hand.

The chief problem for ecologsts in this approach isthe usual one --small
sample sizes. With smallish samples, bootstrapping pairs may give some
strange and variable results. We will thus need to consider paranatric
bootstrapping. The procedure again is simple. One fits a regression model to
the original data, calculates residualsabout the fitted line, andbootstraps the
residuals. Consider the result of fitting a simple linear regression dégiginal
pairs of X,y observations. The outcome is a fitted regression line, denoted as

fi = a +bxj, where aand brepresent the estimates ofa and B, and there are n
pairs of original data. The residuals about regression are calculated as:

ey - yi (=123, .., n) (2.2)

where Ayi is calculated from the fitted line, /S( =a +bxj. We now bootstrap the

residuals, taking repeated random samples with replacement adiservations
from the residuals, add these residuals to the fitted regression lilgett@a new
set of nvalues of y. Combined with theoriginal set of x-values (unchanged

throughout) these new pairsconstitute the bootstrap samples ofFig. 2.1. We
then calculate the bootstrap replication by fitting a neggression line to the
bootstrap sample. Of course, if we are only interested in, say, the slopes, b, then
only that calculation needs to becarried out. The only tricky part is to
remember that the newvalues of y are computed from the ith value of x, so
that the sameresidual (g may be associated with several values of ¥,
depending onthe random selection. That is, the new set of y values is

computed from:
iva+bx+g (=123, ..,n) (2.3)

with a and b coming from the regression line fitted to the original data and the
values of gcome from a random sample witheplacement ofthe n datapoints

generated byeq.(2.2). Stdents shouldrepeat the @lculations shown below to
fix the scheme in mind. EXCEL will produce fitted valuésheck the “residuals”
box) which can be used t@onstruct bootstrap samples by adding them to the

€.
Exampl e 2.2 Parametric regression bootstrapping.

For sinplicity, we will suppose that we want 95% confidence limts on
the slope, B, of a regression |line. The slope estimate is cal cul ated as:

pp RO T 55 (2.4)

Z(xj - X)2
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and the intercept estimate isa=& =y -bx.

STEP 1 Conpute a regression line fromthe original data (EXCEL does
this for you):

Z(Xi -X)(Yi -¥) _ 325.181239

b== = = 0.5157
5 (xj - 'X)2 630.5
a=7y -bx =16.725 - (0.5157)(20.5) = 6.1525
)’/\ = 6.1525 + 0.5157x Regression line from original data
STEP 2 Calculate the deviations ej = 9 i - i
Original data
i N N
I X Y Yi € =Yi-Yi
1 10 12.672 11.31 1.362
2 12 8.9391 12.3415 -3.402
3 14 13.934 13.373 0.561
4 15 16.377 13.8888 2.488
5 17 13.252 14.9203 -1.668
6 21 19.121 16.9833 2.137
7 23 17.821 18.0148 -0.194
8 28 18.879 20.5936 -1.715

©

30 21.047 21.6251 -0.578
10 35 25.213 24.2038 1.009
STEP 3 Draw random sanples of 10 with replacenent fromthe ej:
i <] Random sanples with replacenent fromthe g
1 1.362 -0.1936 0.5607 -1.6681 -0.5776 -3.4024 1.0091
2 -3.402 -0.5776 2.4879 -0.1936 -0.1936 1.3618 -3.4024
3 0.561 -1.7150 -1.7150 1.0091 -3.4024 1.0091 0.5607
4 2.488 0.5607 1.3618 2.4879 -0.1936 -3.4024 1.3618
5 -1.668 1.3618 -0.1936 -1.7150 -0.1936 1.0091 2.1373
6 2.137 -1.6681 -1.6681 1.3618 -0.5776 1.0091 1.3618
7 -0.194 2.1373 -0.1936 0.5607 -1.6681 -3.4024 -3.4024
8 -1.715 -0.1936 1.0091 2.4879 -1.7150 -3.4024 -3.4024
9 -0.578 -1.7150 -0.5776 1.3618 1.3618 2.4879 0.5607
10 1.009 1.3618 -1.6681 1.3618 1.0091 -1.7150 2.1373
STEP 4 Add the random sanples of ej to the predicted regression line to

obt ai n new sets of yj:
N N
X Vi Y i trandom sanpl es with replacenent fromthe e;

10 11.31 11.1164 11.8708 9.6419 10.7325 7.9076
12 12.342 11.7640 14.8294 12.1479 12.1479 13.7033
14 13.373 11.6580 11.6580 14.3822 9.9706 14.3822
15 13.889 14.4495 15.2506 16.3766 13.6952 10.4864
17 14.92 16.2821 14.7267 13.2053 14.7267 15.9294
21 16.983 15.3152 15.3152 18.3451 16.4057 17.9924
23 18.015 20.1521 17.8212 18.5755 16.3467 14.6124
28 20.594 20.3999 21.6027 23.0814 18.8786 17.1911
30 21.625 19.9101 21.0475 22.9868 22.9868 24.1129
35 24.204 25.5656 22.5357 25.5656 25.2130 22.4888

O WO ~NOO UL, WNPE
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STEP 5 Calculate regression slopes for each of these new sets of
"data", using the sane set of Xj . This gives the val ues,
0.542, 0. 443, 0. 608, 0.582,0.513, and 0.520. In practice, of course, one
would calculate a large set of such estinmates, 1,000 or nore. The
frequency distribution of these values then provides the basis for
confidence linits, as calculated previously for neans.

A generalized summary of the steps in parametric bootstrapping is as follows:

1) Compute estimates of the parameterstioé model from the original data. I n
this case, the regression coefficients, a and b.

2) Calculate deviations, e:Q i - Yi, between the observed data (y) ard the

fitted model /(\yi).

3) Draw B (at least 1,000 for confidence linits) random samples of nwith
replacement from this set of deviations.

4) Add these deviations to the. i yto create the bootstrap replications.

5) Compute parameter estimates from each of these B sets of data.
6) Arrange these B estimates in &equency distribution and count in aB/2
observations from each end to obtain o)% confidence Ilimits.

Calculations can be carried out in EXCEL by using the saameangement
as used in Sec. 2.5 to get confidence Ilimits on a mean. The data to be
bootstrapped are now the deviations from regression, andthe bootstrap
operation proceeds in exactly the same manner. Howesanther stage has to
be incorporated in which the bootstrapped deviations are added to the
predicted regression. These newregression values are hHen used toestimate
the parameters othe regression equation. Inthe present example, only the
slope is calculated. This can be done byusing the SLOPE function, which
returns the slope of two arrays. Thevalues are the originalvalues, while the
y-values are those inthe body ofthe table. The 1,000slope values were then
ordered, and approximate 95% confidence limits obtained bycounting up and
down 25entries. The limits obtained from the EXCEL calculation (B =1,000)
were 0.375 and 0.648. Acalculation using a program written in BASIC were
0.377 to 0.652. Aplot of the results 0of2,000 bootstraps computed bythe BASIC
program appears in Fig.2.3.

Students should review normal theory regression calculations irChap.
1.0 or in astatistics textbook. The variance about regression iscalculated as
follows:

N
o Z(yi - i)?
S —
n - 2
Z(y, —(a+bx))*
n-2
An estimate of the variance of the regression coefficient is given by:
2o S
(% —X)?

(2.5)

$ (2.6)
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and this variance has the t-distribution wth n-2 degrees of freedomunder
normal theory. For 95% confidence limits in the pesent example, welook up

the 0.025 ¢/2) value of twith 8 degrees of freedom, finding it to b2306, and
calculate:

Upper 95% confidence limit = b + ¢ = 0.516 + 2.306(3.952/6308% = 0.698,

and the anagous lower Ilimit is 0.333. Notethat these limits are somewhat
wider than the 95% limits obtained bybootstrapping. Asmall sample of quite
variable data is involved. It is always important to look at a plot of the data.

120¢

100+ - ][]

8 0 B

6 O1

Count
|
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2 01

1 il -

25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75
REGRESS ON SL OPE

Fig. 2.3. Frequency plot of 2,000 bootstraps created by aBASIC program. The
heavy central line shows theposition ofthe regression slope calculated from
the original data, while the lighter solid lines show the 95% bootstrap
confidence limits. Broken lines show normal 95% confidence limits calculated
from the observed data.

30

y = 6.1528 + 0.51574x R"2 = 0.841

0 ' 10 X 20 ' 30 ' 40
Fig. 2.4. Regression plot of the original data used in Example 2.2.
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Most "canned" statistical programalso give the correlation coefficient,
which is defined as:

S(xi -xX)(vyi -V
r="= (2.7)

[2(xi - %2z (yi - 9212

In the present example, r = 0.917, and is reported by the graghiwgram that

produced Fig. 2.3 as £ =0.841. Avery serious problem for ecologists isthat
much ofthe datathey encounter isnot normally distributed, and routine use
of statistical packages without examinindpe assumptions ostudying the data
can lead to important errors in interpreting the daBmootstrapping provides a
way to examine the data without the normal theory assumptions,and thus
helps toavoid blunders. The above set of regression data does conform to the
normal theory model, so it is wrthwhile tolook at another example from a
different source for contrast. The basis for claiming conformity to normal
theory is that the data were constructed using normally distributed errors.

Exanple 2.3. A regression estimate of survival rate. As a further
exanple, we consider a comon use of regression methods. Many
investigators are interested in estimating survival rates. Suppose we
observe 100 narked aninmals over 10 years, and tally the nunber of
survivors at the end of each year. If the probability of survival holds
constant from year to year and animal to aninmal, then we can consider

that the expected nunmber surviving x years is just E(n) = NpX, where N
is the nunmber originally marked and p is the probability of surviving a
year. We nmight then use a nodel, y;j = NsX, where y;j is the nunber

observed at the end of the xth year and s is the survival rate. Taking
| ogarithns gives:

lgg =log N +x log s (2.8)

and an easy approach is just to fit a sinple linear regression equation,

y = a + bx, where b = log s, and use eP to estimate s. An exanple of
such a data set foll ows:

Year Survivors Log survivors

1 89 4.48864
2 83 4.41884
3 74 4.30407
4 68 4.21951
5 65 4.17439
6 60 4.09435
7 55 4.00733
8 51 3.93183
9 48 3.87120
10 38 3.63759

Plotting | og survivors agai nst year gives the follow ng graph:
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y = 4.5838 - 8.5277e-2x R"2 = 0.975

LOG SURVIVORS

36 T T T T T T T T T T T T T T T T L) T L) 1

0 1 2 3 4 5 6 7 8 9 10
YEAR

Fig. 2.5. Logarithns of the nunber of animals surviving at the end of
each year regressed against tine in years.

Using normal linear regression theory as in the previous exanple
gives a slope of -0.08528 with 95% confidence limts of -0.0742 to -
0.0963, and translating these back to a survival rate and confidence
limts gives e 008528 = 0 918 with approxi mte 95% confidence linits of
0.908 to 0.928. A run of 2,000 bootstraps (paranmetric regression) gave
the following frequency distribution, and 95% confidence limts of -
0.09381 and -0.07717, which translate to an annual survival range of
0.910 to 0.926. The bootstrapping was done with a BASIC program but
coul d have been conducted in EXCEL, just as in the previous exanple.
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Fig. 2.6. Results of 2,000 paranetric regression bootstraps for survival
data. Bold central line shows the regression survival estimte (0.928)
and solid lines the bootstrap 95% confidence linits. Broken lines are
the 95% confidence limts obtained fromnormal regression theory.
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The bootstrap lints appear to be a little "tighter" than the
normal theory linmts. How can we determ ne which nethod is right? One
approach is to use "Monte Carlo" methods, which in this case amunt to
running many stochastic sinulations of survival data, and determ ng
which of the two choices for calculating confidence limts gives the
best "coverage", i.e., do the calculated confidence linmts include the
true survival rate in 95% of sinmulated cases?

Example 2.4. The correlation coefficient. The correlation coefficient
(r) calculated as in eq.(2.7) is widely used, along with the assunption
that a transformation to:
1+r
z=05 Io@l-r (2.9)
is normally distributed with expected val ue

L+p oL
1p and variance =5

1
Approxi mate 95% confidence linits are obtained fromziZ{m}llz. Thus

pu = 0.5 log

in Exanple 2.2, we had r = 0.917 which is transfornmed to:

1.917 1 .
z=05 logef~5g3 | £ 2[7]1/2 or z1 = 2.326 and zo = 0.814. These confidence
limts for the transformed variable are wusually transforned back by
iteritive solutions of eq. (2.9), i.e., we find rq and ro from

1+r 1+r
2.326 =0.5 Ioge1 T and 0.814 = 0.5 Ioge1 r

whi ch gives 95% confidence linmts onr as 0.67 to 0.98. If we resort to
boot st rappi ng, then the 2000 bootstraps used to produce Fig. 2.3 (val ues
of r were conputed at the same tinme that values of b were calcul ated)
gave approxi mate 95% confidence limts of 0.86 to 0.98, essentially the
sanme upper limt, but an appreciably higher lower limt. A graph of the
results foll ows:

2257
2 0 0f
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§100- —
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2 57
/75 .8 .825.85.875 .9 .925.95.975 1 1.0:Z
CORRELATION

Fig. 2.7. Results of 2,000 bootstraps for the correlation coefficient of
the regression data of Exanple 2.2. Heavy I|ine shows correlation
coefficient calculated fromthe original data, while lighter lines are
approxi mate 95% confidence limts from bootstrapping.
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Clearly, the bootstrapped values of the correlation coefficient
are quite skewed, but this is the situation with respect to nornal
regression theory also; the correlation of tw jointly normal
di stributions has a skewed distribution (unless p = 0).

2.10 EXERCISES

Where bootstraps of 1,000 or more are involved, students should do the work in
individual spreadsheets unless their computer has a large memory. Otherwise
you are likely to get an “out of memory” notice when you try to copy from one
workbook to another, etc. Make two worksheets for each such exercise, one
summarizing results and the second containing the -calculations. The practical
approach is to save only the first 20 lines or so, when you have finished an
exercise. You then can likely consolidate all results in one workbook to hand
in. It is important to have your exercises in a workbook, as that makes it
possible to try to find out where you went wrong if necessaFy. YOU WANT

TO LEARN TO BOOTSTRAP IN EXCEL, IT IS ESSENTIAL TO DO THE

EXERCISES! The exercises are more or less interlocking so you will need to do
most of them. If you do, you should have a pretty fair notion of how to
bootstrap. The bootstrapping technique will be used for examples and exercises
in the rest of the book, so you need to know how to do it. If you know a
programming language, you can certainly do the exercises that way, and
provide summary tables and graphs to turn in. An Appendix provides
bootstrapping programs as EXCEL “macros” and you can check results with
those programs, but you should do the exercises as outlined in Chapters 2 and 3,
and then check them with the programs if you want to do so. If you have not
used the *“graph wizard” function before, you may have trouble getting
appropriate x-values on the graph. The trick is to first make an “xy
(scatterplot)” graph, finish it and then open the CHART menu and select the
bar chart. This changes the xy plot to a bar chart with the appropriate x-axis
labels.

2.10.1 Set up an EXCEL worksheet to carry out bootstrap calculations on the data
of Fig. 2.1, following the approach outlined in Table 2.1. Use 200 bootstraps. Set
up the worksheet to use manual calculation as indicated in Example 2.1 and
make 30 runs, recording the mean of the 200 bootstrap means in a separate
column (you need to either type in the observed values as you repeatedly run
the bootstrapping or use the “PASTE SPECIAL” command). Also calculate the
variance of each group of 10 bootstrap samples, listing it at the bottom of the
set along with the sum and mean of each set of 10. Record your results on a
spreadsheet and save it for the next exercise. Calculate s.e.(boot) of eq. (2.1).

The explanation of using HLOOKUP in EXCEL manuals may not be very helpful.
The sample below might help. This is part of a worksheet set up as indicated
above and the HLOOKUP string displayed in the header of the worksheet is as
follows, referring to the bootstrap sample in the box in the body of the table. It
commands EXCEL to lookup the random number in cell D3 (which is 3) in the
table of the first two rows (designated in the command as the array $D1:$M$2
and shown in boldface type below) and find the corresponding item in the
second row of the array table (which is 203).
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=HLOOKUP(D3,$D$1:$M$2,2,FALSE)

A B C D E E G H N K L M

EXERCISE 1 2 3 4 5 6 7 8 9 10
2.10.1 ORIGINAL DATA 13106203131160 8 67 61 11301

1 3 9 8 3 7 4 9 1 1 5 10 5 5

2 2 4 5 2 6 3 9 1 8 7 6 6 9

3 7 4 1 6 3 2 3 1 3 6 6 1 1

4 5 8 3 5 9 8 10 7 4 7 10 10 8

RANDOM NOS. 5 5 2 3 10 10 4 3 8 9 4 5 9 5

6 8 3 9 4 5 10 4 3 10 6 9 3 8

7 8 2 8 8 7 9 1 10 6 10 9 8 3

8 2 5 1 10 5 5 9 2 1 4 7 1 3

9 7 8 10 3 6 5 2 3 5 10 4 8 5

10 6 9 2 1 5 6 6 7 6 4 1 8 8

if 203 11 61 203 67 131 11 13 13 160 301 160 160

2 106 131 160 106 8 203 11 13 61 67 8 8 11

3 67 131 13 8 203 106 203 13 203 8 8 13 13

BOOTSTRAP 4 160 61 203 160 11 61 301 67 131 67 301 301 61

SAMPLES 5 160 106 203 301 301 131 203 61 11 131 160 11 160

6 61 203 11 131 160 301 131 203 301 8 11 203 61

7 61 106 61 61 67 11 13 301 8 301 11 61 203

8 106 160 13 301 160 160 11 106 13 131 67 13 203

9 67 61 301 203 8 160 106 203 160 301 131 61 160

10 8 11 106 13 160 8 8 67 8 131 13 61 61

BOOTSTRAP 1 2 3 4 5 6 7 8 9 10 11 12 13

SUM 999 0981 1132 1487 1145 1272 998 1047 909 1305 1011 892 1093
MEAN 99.9 98.1 113 149 115 127 99.8 105 90.9 131 101 89.2 109

The second item in the column of bootstrap samples (just below the item in a
box) has the following command:

=HLOOKUP(D4,$D$1:$M$2,2,FALSE)

which instructs EXCEL to find the random number in the position D4

(remember that the first row of the table above, with letters A, B, C etc. is NOT
part of a worksheet but merely gives locations in that worksheet). This random
number is 2 and thus EXCEL picks out the second item in the array which is
106. The third command is as follows, and EXCEL uses the random number in D5
to pick out the ? item in the array which is 67.

=HLOOKUP(D5,$D$1:$M$2,2,FALSE)

You may need to exert considerable patience and some trial and error efforts to
get EXCEL to do the job if you have not worked much with it before, but once
you have the hang of it, things should go along o.k.

2.10.2 Copy the original data and the run of 30 means obtained above to

another spreadsheet, and compute means and variances for the two sets of data
(the original data, 10 observations and the 30 means) using the built-in
functions, i.e., AVERAGE() and VAR(). Make histograms of these means and
variances from a run of the spreadsheet made in Exercise 2.10.1 (that is, make
histograms of the 200 bootstrap means and variances on that sheet). Show how

S€,00t Of €0.(2.1) compares with the variance of the original 10 observations
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and the variance of the 30 means. Is there any advantage to using
bootstrapping in this example?

2.10.3 Repeat the die-tossing example of Section 2.3 using EXCEL. Calculate the
expected values. Explain the difference between a p.d.f. and an empirical
probability distribution. Which is which in this example? What is the
difference between a cumulative distribution function and a distribution
function? State the distribution function for this example (as an equation).

2.10.4 Carry out the parametric bootstrap calculations for Example 2.3 using an
EXCEL spreadsheet (the approach is given in Example 2.2). Use 1,000 bootstraps,
and use VLOOKUP(). It is easier to use for larger numbers of bootstraps.
Calculate confidence limits and prepare a graph of the frequency distribution
to compare with Fig. 2.7. Use HISTOGRAM to obtain the frequency distribution.
Be sure to “freeze” the appropriate cell references using $R$C so that the x-
values remain the same in calculating the bootstraps. You can obtain
confidence limits simply by ordering the slopes using the SORT function.

2.10.5 Bootstrap the data of Example 2.2, using 1,000 bootstraps and computing
the correlation coefficients rather than the slopes. You can start by copying
the bootstrap calculation of Exercise 2.10.4 to a new spreadsheet and inserting
the x and y values in this sheet. One can often convert a bootstrap operation to
a new data set this way, so it is wise to keep examples on hand. Make a
frequency distribution of z (eq.(2.9). Does this look like a normal distribution

as assumed in calculating confidence limits under the usual theory?

2.10.6 How would you obtain bootstrap confidence limits onin Example 2.3?
Calculate the 95% bootstrap confidence limits using 1000 bootstraps. Run the
EXCEL regression on the data and compare the confidence limits amith

those you obtained from bootstrapping.

2.10. 7 The regression bootstrap of Example 2.3 used parametric bootstrapping
in which deviations from a model fitted to the original data are bootstrapped.
The first example of bootstrapping given (Example 2.1) might thus be called
"nonparametric” bootstrapping. Try this approach on the data of Example 2.3.
Remember that you need to bootstrap pairs of observations. This may require
setting up the slope calculations in blocks of 10, but careful use of the
$function will facilitate copying down in blocks of 10 without too much

trouble. Use B = 200, and make a frequency plot of the calculated slopes and
compare it with the frequency diagram of Exercise 2.10.4. . This should
illustrate why parametric bootstrapping is preferred for small samples in
regression studies. This exercise can be time-consuming and illustrates why a
programming approach is needed. Try using the program in the Appendix and
run 2,000 bootstraps with it.

2.10.8 Referring to the data of Example 2.3, calculate bootstrap 95% confidence
limits on the variance about regression as shown in eq. (2.5). Compare your
results with the value you get from a regression calculation on the original
data of Example 2.3. Report your results on a worksheet (along the lines of
those used thus far in the exercises above). You can use the results of Exercise
2.10.6 as a starting point adding on columns containing the sum-of-squares
calculation and adding these up to get a variance estimate.
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